* Step 1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
active(c()) -> mark(d())
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(c()) -> ok(c())
proper(d()) -> ok(d())
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,g/1,h/1,proper/1,top/1} / {c/0,d/0,mark/1,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,g,h,proper,top} and constructors {c,d,mark,ok}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 4.
The enriched problem is compatible with follwoing automaton.
active_0(2) -> 1
active_1(2) -> 5
active_2(3) -> 6
active_2(4) -> 6
active_3(7) -> 8
active_4(9) -> 10
c_0() -> 2
c_1() -> 4
d_0() -> 2
d_1() -> 3
d_2() -> 7
d_3() -> 9
g_0(2) -> 1
g_1(2) -> 4
h_0(2) -> 1
h_1(2) -> 4
mark_0(2) -> 2
mark_1(3) -> 1
mark_1(3) -> 5
mark_2(7) -> 6
ok_0(2) -> 2
ok_1(3) -> 1
ok_1(3) -> 5
ok_1(4) -> 1
ok_1(4) -> 4
ok_1(4) -> 5
ok_2(7) -> 6
ok_3(9) -> 8
proper_0(2) -> 1
proper_1(2) -> 5
proper_2(3) -> 6
proper_3(7) -> 8
top_0(2) -> 1
top_1(5) -> 1
top_2(6) -> 1
top_3(8) -> 1
top_4(10) -> 1
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
active(c()) -> mark(d())
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(c()) -> ok(c())
proper(d()) -> ok(d())
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,g/1,h/1,proper/1,top/1} / {c/0,d/0,mark/1,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,g,h,proper,top} and constructors {c,d,mark,ok}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))